Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters

نویسندگان

  • Matthias Schneider
  • Sven Hirsch
  • Bruno Weber
  • Gábor Székely
  • Bjoern H. Menze
چکیده

CONTRIBUTIONS We propose a novel framework for joint 3-D vessel segmentation and centerline extraction. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn from noisy annotations. It relies on steerable filters for the efficient computation of local image features at different scales and orientations. EXPERIMENTS We validate both the segmentation performance and the centerline accuracy of our approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at 700 nm resolution. First, we evaluate the most important structural components of our approach: (1) Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction based on homotopic skeletonization and geodesic path tracing. RESULTS Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of oblique split directions over univariate orthogonal splits. We further show that the learning-based approach outperforms different state-of-the-art methods and proves highly accurate and robust with regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in the training data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oblique Random Forests for 3-D Vessel Detection Using Steerable Filters and Orthogonal Subspace Filtering

We propose a machine learning-based framework using oblique random forests for 3-D vessel segmentation. Two different kinds of features are compared. One is based on orthogonal subspace filtering where we learn 3-D eigenspace filters from local image patches that return task optimal feature responses. The other uses a specific set of steerable filters that show, qualitatively, similarities to t...

متن کامل

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Accuracy Evaluation of Different Centerline Approximations of Blood Vessels

Accurate determination of the vessel axis is a prerequisite for automated visualization and quantification of artery diseases. This paper presents an evaluation of different methods for approximating the centerline of the vessel in a phantom simulating the peripheral arteries. Six algorithms were used to determine the centerline of a synthetic peripheral arterial vessel. They are based on: ray ...

متن کامل

Artery Vein Classification of Blood Vessels in Retinal Image: an Automated Approach

Artery/Vein (A/V) of retinal vessel is helpful for the automating the detection of various diseases such as Diabetic Retinography, high blood pressure, pancreas, and other vascular conditions. An automated approach is presented in this paper for classification of blood vessels into Artery/Vein based on the features extracted from the centerline pixels. The proposed method consists of 4 importan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2015